
J. Appl. Maths Mechs, Vol. 67, No. 4, pp. 525-537, 2003 
0 2003 Elscvier Ltd 

PII: SOO21-8928~03)00091-1 
All rights reserved. Printed in Great Britain 

0021-892X/$-see front matter 

A FREQUENCY-PARAMETRIC ANALYSIS OF NATURAL 
OSCILLATIONS OF NON-UNIFORM RODS-f 

L. D. AKULENKO and S. V. NESTEROV 
Moscow 

e-mail: kumak@ipmnet.ru 

(Recrived 1 Ju& 2002) 

A constructive numcrica-analytical method of investigating free transverse oscillations of a highly non-uniform rod with the 
boundary conditions of elastic clamping is devclopcd. Standard special cases of the boundary conditions are also considered. To 
solve the corresponding self adjoint boundary eigenvaluc and eigenfunction problem, an effective computational procedure for 
dctcrmining the frequencies and shapes of the oscillations is set up, similar to the shooting method. Assertions equivalent to the 
Sturm comparison thcorcms and corollaries of them for second-order boundary-value problems are formulated. The algorithm 
is tested on model examples with known solutions. A parametric synthesis is carried out for a family of conical rods for different 
boundary conditions, which is important for applications. The results obtained arc compared with the classical results of Kirchhoff, 
Timoshcnko and Gould. 0 2003 Elscvicr Ltd. All rights reserved. 

I. FORMULATION OF THE PROBLEM 

The transverse oscillations of a non-uniform rectilinear rod for different boundary conditions are 
investigated using an effective numerical-analytical method, which is a generalization of the well-known 
“shooting” method. To be specific, we will first consider the case when both ends of the rod are rigidly 
clamped (fastened). The corresponding self-adjoint boundary eigenvalue and eigenfunction problem 
(a Sturm-Liouville type problem) in dimensionless variables is described by the relations [l-4] 

(p(x)u”)” = @r(x) - q(x))u, 0 5 x I1 

o<p-spsp+<~, O<r-Irlr+<~, o~q-Iq~q+<~ 
(1.1) 

u(0) = u’(0) = u(l) = u’(l) = 0 (1.2) 

The unknown parameter h > 0 and the function u(x) characterize the frequencies and shapes of free 
oscillations of the rod, respectively. The coefficient p(x) defines the bending stiffness, r(x) is the mass 
per unit length, and q(x) is the elasticity of the external medium. Unlike the standard approaches, the 
length of the rod 1 > 0 is not fixed (in particular, 1 = l), and is assumed to be a variable parameter 
when constructing the solution of problem (1.1) (1.2). With respect to the properties of smoothness 
of the functionsp, r, q we make the following extremely easy assumptions: we can confine ourselves to 
continuity and the possibility of extension to a certain interval (I, 51, see below. 

It is required to obtain a sequence of eigenvalues h = A, (frequencies o, = dx) and functions 
~1 = u,,(x) (the shapes of the oscillations). The main interest, from the theoretical and applied points 
of view, is in the lower modes of oscillations II = 1, 2, . . . (conventionally n < 10). It is well known that 
the self-adjoint boundary-value problem (l.l), (1.2) has a denumerable set of eigenvalues (a discrete 
spectrum) and corresponding eigenfunctions (shapes), which form an orthonormalized basis with weight 
f-(x) 12, 31 

h.E {h,), O<h,<h,<...<h”< . ..( An-n4 

$(X) = 44 A,) (unr u,), = llun1126nm; 
(1.3) 

n, m = 1,2, . . . 

Here a,,, is the Kronecker delta, (., .),. is the scalar product with weight T(X) and ]I. III is the norm 
with weight. The operation of calculating the norm can be replaced by a finite operation using the 
“sensitivity function” u = &/3h as follows [4]: 
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(P(x)W’ = &r(x) - q(x))u+ r(x)u,(x), u(0) = u’(0) = u”(0) = u”‘(0) = 0 

The function u = u,(x) is the solution of the linear Cauchy problem (1.4); it is constructed numerically 
with the simultaneous integration of Eq. (1 .l) (see below). 

Problem (1.1) (1.2) can be simply reformulated in terms of the variational isoperimetric problem 
P, 31 

I 

J[Ul = !JCp(x)u”2 +q(n)u2)dx + min, I[u] = /ullf = jr(x)u’dx = 1 
0 0 

u(0) = u’(0) = u(l) = u’(l) = 0 (1.5) 

he {%I, u&J = 44 h,) (un, u,), = a,,, n = 1,2, . . . 

Here h is the doubled Lagrange multiplier and hi is the value corresponding to the (global) minimum 
of the quadratic functional J (1.5). The subsequent quantities h2, X3, . . . correspond to the local minima 
ofJ, taking into account the orthogonality condition (u, U& = 0, k = 1, 2, . . . , n - 1. On the basis of a 
variational treatment, functional approaches have been developed for finding estimates of the quantities 
h,, and the corresponding functions U,,(X) [2, 31. The computational algorithms enable us to obtain 
effective upper bounds hz. The construction of highly accurate lower bounds hi involves considerable 
computational difficulties. The existing Weinstein-Aronszajn and Fichera methods [2] are extremely 
cumbersome and are not very productive from the algorithmic point of view (see Section 5). 

Note that rough bilateral estimates of the eigenvalues of problem (1 .l), (1.2) have the form 

y, = ~g(cosychy- I), y, = 4.7300, y2 = 7.8532, y3 = 10.9956 (1.6) 

y4 = 14.1372, ys = 17.2788, . . . . y, = (n + 1/2)x+ O(e-““), n 9 1 

The bounds h; (1.6) will be sufficiently accurate for h, (1.3), if the functions&), r(x) and q(x) vary 
only slightly for allx E [0, I], i. e. the differencesp+ -pm, r’ -r-, q+ -q- are relatively small. In this case 
the perturbation method [5] can be used, which enables analytical refinement of the solution to be carried 
out. However, it is inefficient for numerical calculations. The bounds (1.6) can be used in the general 
case considered to construct an initial approximation in recurrence calculation schemes (successive 
approximations, accelerated convergence, etc.). These algorithms can be fairly effective in combina- 
tion with procedures for extension with respect to the system parameters (parametric synthesis) or with 
respect to artificially introduced parameters to improve the convergence [4]. The methods and algorithms 
presented in the scientific literature are insufficient for carrying out highly accurate and mass operative 
calculations. 

Note that Eq. (1.1) is inconvenient for a numerical-analytical investigation. If the function p(x) is 
twice continuously differentiable, this equation can be reduced to a standard form of fourth-order linear 
equation or a first-order system of equations (the Cauchy form). However, it is more natural to introduce 
additional variables z and u, which have a mechanical meaning. Problem (l.l), (1.2) takes the form 

u1 = e, 0’ = -L 
P(X)’ 

z’ = p, p’ = -(b(x) -q(x))u 

( 

(1.7) 
u(0) = 0(O) = u(l) = 0(l) = 0 u” A- = -p(x)’ z” = -(b(x) - q(x))u) 

where z is the moment of the forces of elasticity and u is the shearing force. The form of (1.7) does not 
require the coefficient p(x) to be differentiable; it is sufficient for it to be continuous. 
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In addition to the boundary conditions of rigid clamping of the ends (1.2) or (1.7) we can take other 
conditions, which lead to a self adjoint boundary-value problem. These include pinning: u = z = 0, free 
ends: z = j.t = 0, and fixing of the direction of the tangent: 8 = u = 0. These types of conditions may 
exist at one or both ends. We will take as conditions of general form elastic clamping with respect to 
displacement and rotation of the tangent at the ends of the rod 

(1.8) 

The normalized coefficients K,,, ,, o,,. I define the relative effect of the stiffness of the elastic clamping 
of the ends with respect to displacement and rotation, respectively. The case (1.2) (1.7) of absolutely 
rigid clampin corresponds to “infinitely large” values of the stiffness, i.e. the relative values are equal 
to unity: Ko, I 7 1, oo, I ‘? 1. The special cases of boundary conditions mentioned above are limiting for 
(1.8) with respect to Q,, or/and oo, ,. The case of infinite stiffness with respect to displacement or/and 
rotation of the end can be realised rather approximately, since the material of the base, to which the 
ends are fastened, possesses a limited (often low) stiffness. 

Note that in the equation of the oscillations of a rod (1.1) or systems (1.7) the effect of the external 
elastic medium (a Winkler base) is taken into account. The generalization of the model to the case of 
bending-torsional oscillations [6] of highly non-uniform rods is of considerable interest from the 
theoretical and applied points of view. 

2. SCHEME OF THE SOLUTION 

The standard procedure for obtaining the eigenvalues and eigenfunctions of problem (1.7) consists of 
constructing a general solution of the equations, which depends on the parameter h, with subsequent 
satisfaction of the conditions on the boundaryx = 0,l. The necessary and sufficient condition for the 
solution to be non-trivial is that the determinant of the matrix of the fundamental system should be 
equal to zero. This condition leads to the characteristic equation for the eigenvalues h,,. According to 
the general theory, the determinant is the entire function of h, which, in the real region where h > 0, 
has a denumerable set of roots {A,}, where h,, - n4 (n = 1,2 , . . .); the bilateral estimates are represented 
by formulae (1.6). 

According to problem (1.7) the solution is defined by the vector function U = (u, 8, z, p). As it applies 
to problem (1.7) it is required to construct two families of solutions (h is the parameter of the family) 
of the Cauchy problem for the following data for n = 0: 

1) U(0) = e(0) = p(O) = 0, z(0) = 1 

2) u(0) = e(o) = z(0) = 0, p(0) = 1 (2.1) 

u = c, U,(x, h) + c,U,(x, h) 

The desired solution U(X, h) is determined, apart from a scalar factor, which is usually found from 
the normalization condition (1.4). Hence, in expressions (2.1) we can assume this factor to be the constant 
cl # 0 (or c2 # 0), while the ratio cl/cZ = TJ (or c /c , 2 = n) together with h can be taken to be required 
quantities. To calculate h and n, we have the boundary conditions for x = 1 

t~(l,h)+~~~~(l,h) = 0, e,(l,h)+~e,(l,h) = 0 (2.4 

For a numerical solution of system (2.2) the sets of values h E A, n E H for each h,,, n,, can be roughly 
estimated using relation (1.6). Standard numerical methods for a more accurate determination of the 
desired quantities require a search among a large number of versions, measure by an order of low, 
where 10mN is the required relative error. Methods based on minimization of the discrepancy lead to 
computational difficulties (“ravine” effects), which increase as II increases, and also when there is an 
appreciable change in the parameters of system (1.7). 

We will briefly consider a more general case of boundary conditions (1.8) corresponding to elastic 
clamping of the ends of the rod. The standard approach dictates the construction of four families of 
solutions U, (the fundamental matrix) 

1) K(o) = I, 2) e(o) = I, ~)z(o) = 1, 4) ~(0) = 1 

U(x,h) = Cc,U;(x,h) (2.3) 
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The values of the remaining components of the solution, in addition to the ones indicated, are assumed 
to be equal to zero (similar to relations (2.1)). S ummation over i in (2.3) is carried out from i = 1 to 
i = 4. The use of boundary conditions (1.8) leads to a system of equations in the required quantities h 
and ci 

(I-K&L+K,,cl = 0 (l-bo)C3--& = 0 

Cc;[(l -K/)Pi + KIU;I, = l = 0, CCi[(l -o,)zi+O1ei]n=r = 0 (2.4) 

As above, normalization on the non-zero constant Cj of system (2.4) leads to four equations in h, ni 
(nj = 1). In the general situation 0 < Ko, I, 00, I < 1; then from the first two equations, the constants, 
for example cs and c4, are expressed in terms of cZ and cl respectively, and are substituted into the last 
two equations. After the normalization by cl (or cZ), these equations are reduced to the form (2.2). 
Various special cases of the clamping of the ends are obtained by passing to the limits as 14). /, 
(Jo. I + 1 or ‘%I, IT (Jo, I + 0. 

3. THE SAGITTARY FUNCTION METHOD. STURM TYPE THEOREMS 

The characteristic equation for finding the eigenvalues of the parameter h for problem (1.7) has the 
form 

S(h, 1) = 0, h = h,(f), S(h, x) I u,(x, h&(X, h) -u,(x, h)el(x, h) 

Olxlf, O<f<=, h>O; S(h,X)>O, o<xe I, h-1 (3.1) 

As already has been noted in Section 2, the conditions for the solution of the form (2.1) of the 
boundary-value problem to be non-trivial, namely, that the determinant of the linear system in cl and 
c2 should be equal to zero when x = 1, leads to relation (3.1). It is obvious that this relation can be 
obtained also by eliminating the unknown t~ from system (2.2). In the standard approaches the parameter 
I(1 = 1) is fixed and the function S is assumed to depend only on the unknown argument h. Below we 
describe methods and computational algorithms based on the idea of the sagittary function S&x), which 
we have introduced, that depend on two arguments, h andx. Using it we can investigate the fundamental 
properties of the solution of the eigenvalue and eigenfunction problem, similar to the Sturm comparison 
theorems and corollaries from them [7,8]. The meaning of the adjective sagittary and its content follow 
from the further constructions. 

The characteristic equation and the sagittary function for boundary conditions (1.8) are defined in 
the same way as (3.1) 

S(h, I) = 0, h = h,(f) 

S(h, x) = Ko(O,$f,, + ( 1 - O@,,) - (I- K&o&,, + (1 - Oo)d,,) 

dij = dij(h, x) = MiZj - MjZi 

~~ = (l-K,)~,+K,+ Zi = (l-(T,)Zi+(Tlei, i,j = 1, . ...4 

(3.2) 

The rather lengthy representation (3.2) for the sagittary function S(h,x) can be reduced considerably 
by constructing two families of linearly independent solutions, which satisfy the following conditions 
whenx = 0 

1) U(0) = 1 -Kg, e(o) = 0, Z(o) = 0, ~(0) = Kg, O< K,,< I 

2) u(o) = 0, e(o) = I - oo, ~(0) = oo, ~(0) = 0, 0~ o. < 1 

u = c,u, +c2u2, 8 = c,el +c,e,, z = clzl +c2z2, P = elk +c2p2 

(3.3) 

Solution (3.3) automatically satisfies boundary condition (1.8) for x = 0 for arbitrary h, cl and c2. 
The characteristic equation and the sagittary function have the form 
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S(h, I) = 0, h = h,(l) 

S(h, x) = (( 1 -K&,(X, h) + K,U,(X, A))((1 -Q&9 A) + c&(x, A))- (3.4) 

- (( 1 - K&*(X, h) + K,U+-, A))((1 - (3,)Zi(X, A) + @,(x9 A)) 

Any form of solution, from considerations of convenience, can be used in the calculations. Thus, in 
the first case (2.3) the construction of the fundamental system of solutions is independent of the 
parameters ~g, oo, which are taken into account in subsequent stages of determining the sagittary function 
and the characteristic equation according to relations (3.2). In the second case (3.3), when constructing 
linearly independent solutions, the quantities q, o. are taken into account, but the number of integrable 
Cauchy problems to be integrated is halved. 

Thus, in what follows, the sagittary function S(h, x) is further assumed to be known; it can be 
constructed analytically (extremely rarely) or numerically by integrating Cauchy problems. In this case 
either successive calculation of the functions ui, @, zi, pj for fixed values of h is required with subsequent 
storage, or simultaneous integration of (two or four) Cauchy problems and calculation of S(h, x) using 
finite formulae. The sagittary function S can be determined as the solution of this set of Cauchy problems 
and a non-linear equation. For conditions (1.7) the sagittary function S (3.1) is changed in accordance 
with the equation 

S’ = (z1u* - z~u,)Ip(x), S(h, 0) = 0, 0 I x I1 

S&X) = 0(x4), s>o, o<xe 1, h- 1 
P-5) 

Relations for the sagittary function, similar to (3.5), where obtained for the other boundary conditions 
indicated in Section 1. On the basis of an analysis of the sagittary function S&x) fundamental properties 
of the solution of the initial problem can be established and assertions can be formulated similar to 
Sturm’s oscillation theorem and Sturm’s comparison theorems and corollaries of them, which were 
developed previously for a second-order equation of the form (pu’)’ + hru = 0 with corresponding 
boundary conditions [2, 3, 7, 81. These properties are very useful for approximate calculations (see 
Sections 4 and 5). 

For a fixed value of 1 > 0 the sagittary function S(h, I) is an oscillating function of h for h > 0. If we 
take sufficiently large h = h(f) > 0, then S(h, x) is an oscillating function of x for 0 d x d I, having as 
large a number of zeros as desired. When rip > c > 0 for x > 0 the sagittary function S(h, x) will be an 
oscillating function of x independently of 3L > 0. The oscillatory property also occurs as r/p -+ 0 for 
x + 00, if rip - Yy, y < 4. It should be noted that both solutions of the system (u~(x, h), 8,(x, h)), (u2(x, 
h), 0,(x, h)) (2.1) are not oscillating in this sense. 

Suppose, for a fixed values of 1 > 0, we obtain a h > 0 such that S(h, Z) = 0, where the sagittary 
function S(h, x) has no intermediate zeros with respect to x. Then the corresponding h = hi(l) will 
be the first eigenvalue of problem (1.7). If there are n - 1 > 1 intermediate zeros, then h = h,(f) 
will be the nth eigenvalue, where 0 < hi < hz c . . . < h,. By analysing the properties of S(h, x) one 
can establish assertions that are useful for the approximate numerical solution of the problem. 

Theorem 1. Suppose for h = h*, the sagittary function S(h*, x) has II (n = 1, 2, . ..) intermediate 
zeros with respect x, 0 < x d 1. Then, when h = h* * > h* the sagittary function S(h* *, x) has no less 
than II zeros in this interval. 

Moreover, an unlimited increase in h leads to an unlimited increase in the number of zeros in the 
specified interval 0 G x d 1. 

Theorem 2. Suppose for h = h*, the sagittary function satisfies the relation S(h*, x) = 0 for x = xi 
and x = x2, where 0 G x1 < x2 d 1. Then when h = h** > h* a point x = x3, xl < x3 < x2 exists such that 
S(h**, x3) = 0. 

To construct a solution of the eigenvalue and eigenfunction problem (1.7) the following assertion 
regarding the distribution of the zeros of the sagittary function S&x) when h = h*, h* * is constructive. 

Theorem 3. Let x = x0 be the common zero of the sagittary functions S(h*, x) and S(h**, x). Then, 
when h* * > h* the next zerox = x1 for S(h*,x) andx = x2 for S(h**, x) satisfies the condition x2 < x1. 

Hence it follows that all the zeros Xi > 0 of the sagittary function S@, x) are shifted to the left as h 
increases, and shifted to the right as h decreases. This property establishes a local relation between the 
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Fig. 1 

Fig. 2 

required parameter h and the length of the segment 1 and can be used for calculations. It enables one 
to determine the upper limit 1: and the lower limit &of the eigenvalues h,T, which is extremely important 
for establishing the actual accuracy of approximate solutions. In particular, for the first eigenvalue h,(l) 
the assertion regarding the limits h? and the corresponding zeros x = 4f of the sagittary function 
S(h:, x) holds. 

Theorem 4. Let h, be the upper limit of the first eigenvalue, i.e. hf 
S(h:, 5’) = 0, where E,’ 

3 I,(f). Then the sagittary function 
G 1. Similarly, for the lower limit h; 

0, where k- 3 1 (when c- > 1 the functions&), Y(X) and q( 
< h,(l) we have the equality S(h;, k-) = 

x are assumed to be smoothly continued in ) 
the interval (I, 5-I). If the quantities h’ are fairly close to one another, then I and 5’ will also be as 
close as desired, and moreover S(h:, 1) < 0, S(&, I) > 0. 

The property S(h;, X) > 0 when 0 < x < 1 follows from simple estimates of the functions ~1~. 2(x, hj), 

8,, *(x, A;) according to (2.1) and (3.5) (problem (1.7)). Naturally, when n b 2 the sagittary function 
S(h;, x) may change in sign up to (n - 1) times, while the sagittary function S(hi, X) changes in sign no 
less than n times. In the general case, the determination of the sign of the sagittary function S when 
0 < x < I and its changes when 0 < x < 1 require lengthy estimates, which are more convenient to carry 
out numerically by integrating the Cauchy problems indicated above. 

A typical behaviour of the sagittary function S(h, X) is shown qualitatively in Figs 1 and 2. The 
“separating” property of the sagittary function S is naturally used in computational methods, related 
to subsequent refinement of the required solution. These include the shooting method, the method of 
successive approximations, Newton-type accelerated convergence methods, etc. This is why S has been 
called a sagittary function (from the Latin sagitta, meaning an arrow). Note that it is preferable to use 
the shooting method at the initial stage of the solution of the problem using estimates of the eigenvalues 
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h: obtained in advance using (1.6) or from variational estimates taking relations (1.5) into account [2-4]. 
These values can be refined using a Newton-type rapidly converging method if necessary. This combined 
approach is extremely effective in parametric synthesis, for example, when optimizing the form (see 
Section 6). 

4. COMPUTATIONAL ALGORITHMS OF THE SHOOTING METHOD 
BASED ON THE SAGITTARY FUNCTION 

The properties of the sagittary function S(h, X) (3.1) established above enable us to construct two 
comparatively simple shooting-type recurrence algorithms, which do not require lengthy calculations. 
The main consumption of processor time is due to the fact that two Cauchy problems (1.7) and (2.1) 
have to be integrated for a known value of the parameter h, obtained at the previous step of the iterational 
procedure. Using the sagittary function S(h, x), the value of the parameter h is refined and is then used 
at the next step of the algorithm. Then the accuracy of the solution (the discrepancy) is estimated both 
with respect to the “ordinate”, i.e. ] S(h, r) ] , and with respect to the abscissa 5, i.e. with respect to the 
quantity 6 = ]1- 51, where 5 = arg.,S(h, x). 

We will first consider the problem of finding the first eigenvalue h = h,(Z) and, to reduce the amount 
of writing, we will omit the subscript. We carry out standard operations using the shooting method, 
similar to those used for the case of a second-order equation (the classical Sturm-Liouville problem), 
in which the solution U(X, h) has the meaning of the sagittary function. 

1. Suppose we know fairly close upper and lower limits h’, where, by Theorem 4, the function 
S(h’, I) 5 0. We will devote out main attention to the closeness of h+ to the exact value h, which is 
achieved using the Rayleigh-Ritz method. The meaning of this requirement is that there are no 
additional zeros of the sagittary function S(h+,x), which may appear if h+ is fairly large (Theorem 1). 
The first step of the procedure involves calculating the mean value h(i) and determining, first, the refined 
upper limit XT,) or, second, the lower limit h,, on the basis of the separating property of the sagittary 
function S 

A(,) = $h++h-) 

1) W,,), 4 < 0, A(,) = q,,, A- = q,, 
(4.1) 

The value of the function S(h,,,, ) I is calculated by integrating the Cauchy problems, as in Sections 
2 and 3. As a result of the first step of (4.1), the interval 6, = h+ - h- of uncertainty of h is halved. We 
then carry out the second step and determine the mean value of hczJ and its position with respect to 
the exact value h(,) 5 h(f) using the sign of the quantity S&l,, 1 ). The uncertainty in his thereby reduced 
by a factor of 4, etc. At an arbitrary ith step we have 

1 
‘(1) = Tj(‘:j- 1) + h,-l)) 

1) W(j), 1) < 0, h(i) = h;.), A-. (L- 1) = h,) 

2) SO,,), 1) > 0, A,,) = q,, A;;_ 1) = 1;); h,) I h I A;;) 

6, = (h;,)-h,)) = $(A+-I-). i = 1,2,... 

(4.2) 

Calculations are continued until the required relative error is obtained. One can then find the values 
of the discrepancies with respect to the ordinates S(h$, 1) 
~(1, A$,), Q(l, h&). One can take the quantity vi = 6,/(2h(;:) 

and also with respect to the solutions 
as a measure of the relative closeness of the 

solution. 
In addition to the elementary bisection procedure, one can use other methods, for example, the 

division on the section in the ratio of the “golden section”. To accelerate the convergence, the interval 
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of uncertainty 6i-i can be divided in a ratio proportional to the values of the discrepancies with respect 
to S, i.e. 

The procedure for refining the required solution (4.3) will have a more rapid convergence if the 
dependence of S on h in the neighbourhood of the eigenvalue is close to a linear function with a non- 
zero slope. 

The shooting method scheme described can be transferred as a whole to the case of general boundary 
conditions of elastic clamping of the ends (1.8). Here it is required to determine the sign-definiteness 
of S when 0 < x < 1. The sagittary function S(h, x) is constructed in accordance with the description 
given in Sections 2 and 3 (see (3.2)-(3.4)); it possesses the properties of separation of the zeros of 5 
as a function of the parameter h, indicated in Section 3 (see Theorems l-4). It should be noted that 
the problem has a single zero root ho - 0 in the case of pinning of one of the ends; the other end is 
free. If both ends are free, there is a double zero root &, = 0. For h = hi the assertions presented above 
hold. 

The next eigenvalues h,(l) and eigenfunctions U&V, I), t&(x, f), Z&K, 1) n&, I) for II = 2, 3, . . . are 
constructed in the same way as described above. Here one should bear in mind the presence of (n - 1) 
intermediate zeros of the function S(h,,, x), 0 < x < 1 and the corresponding behaviour (sign) of the 
function (h:, x) in the region of x = 1; in particular, for n = 2 we have S(h;, I) ZZ 0. 

2. The recurrence algorithm of the shooting method, based on a determination of the discrepancies 
with respect to the abscissa - the zeros 6;) of the function S(3L&, x) for specified values of h = h$, is 
more effective, clear, economical and stable from the computational point of view. When constructmg 
the procedure of successive refinement of the first eigenvalue (and the next eigenvalues) the results of 
Theorems 3 and 4 are used. Unlike the procedure (4.1), (4.2) by finding the zerosx = c$, we can reliably 
judge the existence of a solution of the boundary-value problem and its closeness to the required exact 
solution, corresponding tox = 4 = 1. We can also take as a measure of the relative closeness, in addition 
to vI, the quantity xI = <;/(2l), where c, = c; - <: is the difference in the abscissa discrepancies. The 
scheme described does not require a determination of the signs of the function S(h&, x), and involves 
finding the zerosx = SC, > 0 with the required number. 

In particular, to calculate the first eigenvalue h = h,(l) we find the minimum positive roots kc,. At 
the first step of the recurrence procedure, similar to operations (4.1) we carry out the operations 

h(,, = +++ A-); arg,S(h,,,, x) = 5, > 0 

1) 51 < 1, $1, = hf,,, h- = A;,,; 2) 5, >I, A(,, = a,,, A+ = h: (4.4) 

A;,, 5 h 2 A;,,, 6, = ;(h+-k-) = ; 

According to relations (4.4), the uncertainty in the admissible values of h is halved. In subsequent 
steps, it is reduced in a geometrical progression with common ratio I/Z. An arbitrary ith step requires 
the following operations to be carried out (see (4.2)) 

h(i) = i(hG-l)+hFi-l)); xg,S(h(;),x) = ci>O 

‘> Sic ‘7 h(i) = h;i), hLi-,) = I,,); 2, ki>l* h~i, = A,), hTi&*) = h;i) (4.5) 

h& I h 5 q,,, tji = g-, = 2-‘6, i = 1,2,..., 6, = 6 

In addition to determining the relative error of the solution in terms of the parameter h one can also 
find the discrepancies along the abscissa for the functions S, u, and 0. Another rule for the division of 
the uncertainty interval [ho,, h$ can be used, in particular the “golden section” ratio (see above). While 
in a certain small neighbourhood of the exact solution the relation 1(l) may be linearized, by analogy 
with algorithm (4.3) one can divide the uncertainty interval in the ratio of the discrepancies 1 - cL1, 
&I, - 1, i.e. 
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(4.6) 

The refinement scheme, according to relations (4.6) can have a substantially more rapid convergence 
due to the substantial dependence of h on I: h(l): --co < h’(l) < -C < 0 (c - 1). 

The algorithm for the approximate solution (4.4)-(4.6) can be transferred as a whole to the case of 
the calculation of the subsequent eigenvalues h,, and eigenfunctions {u,~(x, f), C&(x, 1), z,(x, I), u,(x, I)} 
forn = 2,3, . . . . The abscissas 5: are determined as the nth zero of the function S(hf,n). The presence 
of boundary conditions of the general form (1 .S) does not lead to any change in this algorithm. 

The shooting-type procedures described arc quite effective for preliminary moderately exact 
estimates of the solution. They do not lead to the accumulation of round-off errors (as in the method 
of successive approximations) and are stable to faults. The main consumption of processor time is due 
to the integration of the Cauchy problems for system ( 1.7). In the case of complex expressions for the 
coefficients II(X), r(x) and q(x) the shooting method can turn out to be inefficient for highly accurate 
massive calculations over a wide range of variation of the mechanical parameters, since it requires a 
comparatively large number of iterations. Then, to construct the parametric synthesis it is preferable 
to use the somewhat more complex accelerated-convergence method [4], since it leads to a considerably 
smaller number of iterations. In situations where the functions p(x), Y(X) and q(x) are sharply varying 
functions, a considerable reduction in the integration step may be required. The choice of the most 
suitable algorithm for calculations can be made by additional investigation based on numerical 
experiments. 

5. EXAMPLES 

To illustrate the computational efficiency of the sagittary function method, we will consider examples 
of rods with strongly varying stiffness&) and mass per unit length r(x), ignoring the effect of the external 
medium (q s 0). These functions are determined in a standard manner using expressions for the moment 
of inertia and the cross-section area of the rod respectively [I]. 

1. First, in order to test the algorithm we will carry out calculations for a model example [4], which 
allows of analytical integration of an equation of the form (1.1) for system (1.7). Suppose the ends of 
the rods are clamped, and the functions&) and Y(X) have the for 

p(x) = pfJ(b +axj2, r(x) = r,(b+ax)-2, b+ax#O (5.1) 

Then, we have an Euler type equation ]4,7,8], the solution of which is constructed in the form of a 
power function (b + M)‘, where k is a complex parameter, defined as the root of the algebraic equation 
k’(k - 1)’ = h/a’, solvable in radicals. The expression obtained for the general solution has a complicated 
form and contains power, trigonometric and logarithmic functions. It is difficult to obtain the roots of 
the characteristic equation of the form (3. I). but these can be obtained numerically for specific values 
of the paramctcrs. 

Note that, without loss of generality, two of the three parameters u, b and 1, and also the constants 
p,, and r,, in (5.1) can be equated to unity. To be specific. we will consider the case when ab > 0; we can 
then put N = 1~ = 1, 1 > 0. Solution (2.1) when h > l/l6 takes the form 

l4 = C,Ul +c2u2 = Jl+x(c,w,(x, h) + c,w,(x, A)), 8 = u’ 

WI = sin(f-h)-(f-lf’)sh(f+h), h = ln(1 +x), O<xlZ 

w2 = cos(f-h) - ch(f+h), f’ = (A+ 1/4)1’2, h> l/16 
(5.2) 

u=O, h< l/16 

Note that the hyperbolic functions reduce to a set of power functions of the form (1 + x)?~*. It follows 
from relations (5.2) that the functions u ,, 2, 8,, z do not have an oscillating form. However, the sagittary 
function S&x) (3.1) is an oscillating function of bothx and of h; in fact, we have the expression 

S(h, X) = 2f-(cos(f-h)ch(f+h) - 1/4(f+f-)-‘sin(f-h)sh(f’h) - 1) (5.3) 
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The characteristic equation for any x = 1 > 0 has a denumerable set of roots h,,(l), which can be 
obtained numerically taking into account the algorithms mentioned in Sections 3 and 4. In particular, 
for I = 1 we can present the “accurate” value h, and the estimates A,, 

h, = 2181.355. &n = (rclln2)*(n + 1/2)2- l/4 + 0(1/n), n 9 1 (5.4) 

We will now use the numerical algorithm described in Section 4 to determine h,. The upper limit, 
on the basis of the two-coordinate (trigonometric) approximation in the Rayleigh-Ritz method, gives 
the value h: = 2338.442, which differs considerably from the exact value (5.4). Using the sagitta 

7 function method, by relations (4.4)-(4.6) we obtain the abscissa 5’ = 0.9770. Using the quantities 5 
we obtain the lower limit h- = (c’)4h’ = 2131.2312, according to the approach described previously 
[4]. The quantity Xc,, (4.4) turns out to be an improved upper limit, since kc,, < 1. Seven iterations give 
the following estimates hf of h, that are extremely close to h, (5.4) 

G(7) = 2181.4093, hi,,, = 2181.3478, h,(,, = 2181.3785 

Ah,& - 10-5, 2-’ = l/256 

We can similarly calculate approximate expressions, with the required accuracy, for the next eigen- 
values h,, n 2 2 and for other 1 > 0. 

In the case of pinned ends of the rod (u = z = 0 when x = 0.1) using the algorithms described in 
Section 4, after six iterations we obtain the required estimates of the first eigenvalue 

&, = 432.3410, h;,,, = 432.2820, h,(7, = 432.3150, Ah,& - lOA 

The model example described has enabled us to illustrate the main theoretical propositions and the 
effectiveness of the computational algorithm. Moreover, we have established that, even in cases 
(extremely rate) of analytical integrability (usually in terms of special functions), numerical methods 
have to be used. In the end it turns out to be preferable to use the numerical-analytical sagittary function 
method to find a solution, as described in Sections 3 and 4, without having to employ complicated 
analytical methods of integrating the equations. 

2. With similar conditions of pinned ends of the rod, to compare the approaches we will investigate 
the case of Eq. (1.1) for&) = 1 + 2 sin’ JTX, r(x) = 1. This eigenvalue and eigenfunction problem was 
solved approximately using the Weinstein-Aronszajn method [2] for n = 1, 2. We obtain the values 
ht = 2.36388 rr4 and X2 = 149.6520 rc4 with a relative error AI/h - 10d. Using an algorithm based on 
sagittary functions we obtain the required estimates h,, ? after six iterations. 

2.36387x4 2 h ,c6j S 2.363897c4, 149.65177~~ I I,(,, I 149.6531~~ 
4 

Note that the Weinstein-Aronszajn method is extremely lengthy and complicated for carrying out 
effective calculations. Our calculations confirm that the sagittary function method has considerable 
advantages for the class of eigenvalue and eigenfunction problems considered, described by fourth-order 
ordinary differential equations. 

6. FREQUENCY-PARAMETRIC SYNTHESIS OF CONICAL RODS 

We will investigate the natural oscillations of a rod of conical form. The geometrical and inertial charac- 
teristics of a truncated cone are given by the expressions 

z?(x) = I?,( 1 -ax/l), G(x) = 7rR2(X), Z(x) = (7r/4)R4(X) 

V, = V,(3-3a+a2), Olal 1, p(x) = El(x), r(x) = dG(x) 
(6.1) 

Here R is the radius, G is the area, I is the moment of inertia of the transverse cross-section of the 
rod, a is a coefficient (the tangent of the semi-aperture angle), V, is the volume of the rod, Vt is the 
volume when a = 1 (V, = 1/37cR$), E is Young’s modulus of the material and d is the (volume) density. 
The values of all the parameters in (6.1) apart from a, are assumed to be fixed. By introducing 
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Fig. 3 

dimensionless parameters and the argument x, 0 cx c 1, Eqs (1.1) and (6.1) can be reduced to a form 
in which the stiffness and the density per unit length are 

p(x) = (1 -cxx)4, T(X) = (1 -CM)* 

In what follows, we will consider the natural oscillations of a family of conical rods of fixed length 
and radius for x = 0 and varying volume. The case a = 0 corresponds to a uniform rod of cylindrical 
form, a = 1 corresponds to a tapered conical rod, for which, when x = 1 (= 1) there is a singularity 
t$$li 7 r(l) = 0) in Eq. (1.1) and system (1.7). Note that when a 1‘ 1 it necessarily follows that 

An investigation of the natural oscillations of conical rods for different boundary conditions is of 
interest for applied problems. We will consider three versions of the boundary conditions: 

(1) both ends of the rod are pinned 

u(0) = u”(0) = U(1) = u”(1) = 0 (6.2) 

(2) the left end of the rod is rigidly clamped while the right end is simply supported (pinned) 

u(0) = u’(0) = U(1) = u”(1) = 0 (6.3) 

(3) both ends are rigidly clamped 

40) = u’(0) = u(1) = u’(l) = 0 (c-4) 

The results of calculations of the first eigenvalue hi(o), corresponding to the fundamental mode of 
oscillations, are shown in Fig. 3. The continuous curves 1, 2, 3 correspond to conditions (6.2), (6.3), 
(6.4). The calculations were carried out for 0 d cx s 0.95 using the sagittary-function method with a 
relative error of Ah/h, - 103. Note that when a = 0.95, the coefficients&) and T(X) change considerably 
(by a factor of 1.6 x lo5 and 400) as x changes fromx = 0 to x = 1. Highly accurate calculations can be 
carried out using the accelerated-convergence method [4 for a = 0.999 and larger values (a 4 1 - 0). 

The results of calculations and curve 1 confirm that as a 4 1 the eigenvalue (the fundamental oscillation 
frequency) of a pinned rod approaches zero. This corresponds to free rotation of the rod around the 
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0 0.5 X 1.0 
Fig. 4 

hinge axis at x = 0; there is no elastic reaction at the end x = 1, since the radius tends to zero. The 
curve of h,(a) is close to a straight line, where h,(O) = rc3, h,( 1) = 0. 

In case 2, when the left end (X = 0) is clamped, while the right end (X = 1) is pinned, the first eigenvalue 
(frequency) is considerably greater (graph 2 is higher than graph 1). As CI T 1 the value of h,(a) tends 
from above to the value h,(l) = 76.5, which corresponds to a cantilever fixed beam of conical form 
[ 1,4]. Curve 2 also has a comparatively simple form, but is more clearly seen to have a convexity upwards. 

In the case of rigidly clamped ends (curve 3) the eigenvalues h,(a) are considerably greater, but as 
a ‘T’ 1 they rapidly converge to the value mentioned above of hr( 1) = 76.5, corresponding to a cantilever 
clamped conical rod. The graph of hi(a) is extremely close to a straight line. The eigenfunctions 
u,(x, h), normalized with weight Y(X), are shown in Fig. 4 for a, = 0, 0.5, 0.9, 0.99 and 0.999. 

Similarly, using the algorithm described in Section 4, and using the idea and properties of the sagittary 
function, presented in Section 3, we calculated the next eigenvalues &,(a) (the oscillation frequencies) 
of a conical rod, and also carried out calculations for other types of boundary conditions. 

We will consider the problem of constructing graphs of h(o) in another case, which is of interest when 
designing the shape of rods. 

Suppose the length of the rod 1 and its volume V, = Vcr are tixed. Then the radius R,, of the cross- 
section of the rod at x = 0 will be a function of the parameter a 

R(x) = R,(cz)( 1 - olxll), R,(a) = (Vo/nl)"2( 1 -CX+ a*/3)-“* (6.5) 

Hence, atx = 0 the radius R(x) of the cross-section of the conical rod R(0) = Ro(a), so that the volume 
V, 5 V, = const; as a increases from a = 0 to a = 1 the radius increases by a factor of 3. By substituting 
expressions (6.5) into (6.1) we can transform the coefficients of Eq. (1.1) or (1.7) so that the eigenvalues 
h(a) and h’(a) of the initial problem (R. = const) and the transformed problem (V,, = VO) are connected 
by the simple relation 

h”(a) = (1 -cc+cX*/3)-ih(a), O<a< 1 (6.6) 

The functions h’(a) are given for the fundamental oscillation mode, in the cases considered of 
boundary conditions (6.2) (6.3) (6.4) in Fig. 3 (the dashed curves 1, 2, 3). For cc = 0 the values of hV 
and h are identical, which is the case according to (6.6); for 0 < a < 1 the curves of h’(a) arc considerably 
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higher than the curves of h(o). This fact is also fairly obvious: a similar cone of large volume for these 
boundary conditions has a higher oscillation frequency. It is interesting to note that in the case of 
asymmetric (different) boundary conditions (6.3) a pronounced maximum of the function h’(a) is 
observed when a = 0.7. 

The above examples confirm that applied shape-optimization problems can be effectively investigated 
using the numerical-analytical methods developed, both in parametric and complete variational 
formulations. 
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